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Two classes of n-dimensional lattice sums are shown to exhibit a weak 
form of a "phase transition" in their asymptotic properties. Both classes 
depend on two parameters such that the leading term in an asymptotic limit 
of one parameter is independent of the structure of the lattice in one 
domain of the second parameter and dependent on the structure in an 
adjacent domain, with a "boundary point," or "transition temperature," 
between the two domains. 
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1. I N T R O D U C T I O N  

Perhaps some insight into the mathematics  of phase transi t ions in realistic 

models may be found  by studying tractable mathematical  systems that 

possess properties weakly analogous to those of a phase transi t ion.  With this 

purpose,  we have studied several classes of n-dimensional  lattice sums that  
exhibit a weak form of a "phase  t r ans i t ion"  in their asymptotic  properties. 

In  this paper  we report on two quite different classes and show a relationship 
between the two classes. For  our  purposes, a lattice sum depending on two 

positive parameters is said to possess a weak phase transition if the leading 
term in an asymptotic  limit of one parameter  is independent  of the structure 
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of  the lattice in one domain of  the other parameter and dependent on the 
structure in an adjacent domain, with a "boundary  point"  between the two 
domains. 

Let {~-} and {7} be two mutually reciprocal, unit, Bravais lattices in an 
n-dimensional Euclidean space. Earlier we reported (1'2~ some of the asymp- 
totic properties of the sums 

S(q) = ~'7-~z(72 + qZ)-s, 0 < l,j, 21+ 2j > n (1) 

for large q values, and more recently we investigated the asymptotic properties 
of the sums (a~ 

J(a) = ~ '  ~_-2k exp(_ar2) ,  0 < a, k (2) 
7 

for a small a values. When k is a positive integer, the J(a) are Chaba- 
Pathria C~ sums. With the theta function method (TFM) of Ewald, r Born 
and co-workers, (6~ and others, Cv~ the S(q) may be evaluated for all 0 ~< q < oc 
andJ(a)  for 0 < a < Go i f0  < 2k ~< n and for 0 ~< a i f 2 k  > n. For positive, 
integral k values the methods of Chaba and Pathria ~4~ may be used to study 
J(a). 

In this paper we show that the asymptotic properties of the S(q) follow 
easily from those of the J(a). Then we shall discuss the weak phase transi- 
tions possessed by S(q) and J(a). 

Using the TFM,  one easily finds ~3~ for J(a) that 

(Tr"J2[F(k)(n/2 - k)a~"12~-~] -1, 0 < 2k < n" I 

= ~r,/,2F(k)-i ln(1/a), 2k = n I (3) J(a << 1) 
1 ~  ,-2~, 2k > n 

Using these properties J(a << 1), we shall show here that 

( ~r"/2F(j + l - hi2) ] 
l(n/2 - I)P(I)F(j)q 2~+2~-n' 0 < 2l < n 

= )2rr "/2 In q 
S(q >> 1) l ~ '  2I = n (4) 

1~__,," ~^. 
t ~  y-2tq -2', 2 l > n  

Thus the asymptotic properties of S(q) for large q follow from the asymp- 
totic properties of J(a) for small a. In our earlier reports (1.2~ on the asymp- 
totic properties of S(q), we used the TFM directly without first applying it 
to investigate J(a) ; the present procedure is somewhat shorter than the earlier 
one, and it is simpler at the boundary point of Eq. (4) given by 21 = n. 
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2. RELATION BETWEEN A S Y M P T O T I C  PROPERTIES  

By the TFM we write 

S(q) = F( j )  o . 72 k dt (5) 

Then, knowing the results of Eq. (3), we are able to apply the Lebesgue 
dominated convergence theorem~8~ and write 

I ( |  ~ ,  exp(-7,2t) 
S(q) = ~(J) Jo tJ-z e x p ( - q  2t) ~,2k dt (6) 

Y 

To secure the leading term in S(q >> 1) we use Eq. (3) with a = t and (with 
a change of lattice identification) substitute into Eq. (6), except for the case 
2k = n, where we integrate only from zero to t = 1. The results are given in 
Eq. (4). This procedure is justified by examining the functional form of the 
entire integrand of Eq. (6). 

3. D I S C U S S I O N  

A " tempera tu re"  T may be defined for S(q >> 1) by setting T = (2I) -2 
with a critical temperature Tc = 1In, and for J(a << 1) a temperature T may 
be defined by T = (2k) -1 with Tc = 1/n. Then S(q >> 1) and J(a << 1) are 
independent of the lattice structure for T f> Tc and are dependent on the 
lattice structure for T < To. To see if further analogy can be developed with 
phase transitions, let us examine S(q >> 1) in more detail. 

Excluding the point T = T~, write 

S(q >> 1)-~ C(T)/q P~T) (7) 

The P(T), when sketched as a function of T, acts a little like an order param- 
eter and C(T) acts a little like a specific heat. Although the analogy with a 
true phase transition is weak, it is rather surprising that this much exists when 
one considers the simple form of the summand in the defining Eq. (1) for 
S(q). This encourages search for other lattice sums for which the analogy 
may be more complete and more instructive without the sums being intract- 
able. 

For T > Tc two points should be made:  (1) the J(a << 1) diverge as 
a--+ 0~ whereas the S(q >> 1) converge (albeit to zero) as q - +  ~ .  (2) The 
leading term for both classes arises in a manner similar to the "collapse of 
the lattice" of Greenspoon and Pathria/9~ 

At T = To, the properties of  S(q) are, we feel, somewhat more un- 
expected than those of J(a). Viewing Eq. (2) with 2k = n, one sees immedi- 
ately that J(a) diverges as a -+ 0, and one expects quite different behavior of  
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J(a) for  2k < n and 2k > n. In contrast ,  since S(q) converges for 21 = n 
p rov ided  j > 0, one might  not  expect  the proper t ies  of  S(q) to vary so 
marked ly  for  21 < n and 21 > n. 

A subset  of  the class J(a) has been of  considerable  interest  recently in 
several areas of  physics,  as discussed by C h a b a  and Pathria .  a~ F o r  n = 3 and 
j = 2, the S(q) sums arose in calculat ions by Plasket t  and  Hal l  ~2~ for l = 1 
(energy) and l = 2 (effective mass). Addi t iona l ly ,  Plasket t  ~1~ has found 

re la t ionships  between the sums (n = 3) 

~'- e x p ( - q r )  (8) 
,r 

and  

~ '  7 -  2(7~ + q2)-1 (9) 
Y 

which are useful for evaluat ing the former  when 0 < q << 1. Accordingly ,  the 

sums S(q) for 0 ~< q < ~ are no t  wi thout  interest  in physics. 
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